![]() |
The Quantum Exact Simulation Toolkit v4.0.0
|
Functions for applying general one-qubit dense matrices, as CompMatr1. More...
Functions | |
void | applyCompMatr1 (Qureg qureg, int target, CompMatr1 matrix) |
void | applyControlledCompMatr1 (Qureg qureg, int control, int target, CompMatr1 matrix) |
void | applyMultiControlledCompMatr1 (Qureg qureg, int *controls, int numControls, int target, CompMatr1 matrix) |
void | applyMultiStateControlledCompMatr1 (Qureg qureg, int *controls, int *states, int numControls, int target, CompMatr1 matrix) |
void | multiplyCompMatr1 (Qureg qureg, int target, CompMatr1 matrix) |
Functions for applying general one-qubit dense matrices, as CompMatr1.
Applies a general one-qubit dense unitary matrix
to the specified target
qubit of qureg
.
matrix
, \( t = \) target
, and let \(\hat{U}_t\) notate operating \(\hat{U}\) upon the \( t \)-th qubit among \( N \), i.e. \[ \hat{U}_t \equiv \id^{N-t} \otimes \hat{U} \otimes \id^{t-1}. \]
Then,qureg
is a statevector \( \svpsi \), this function effects \[ \svpsi \rightarrow \hat{U}_t \, \svpsi. \]
qureg
is a density matrix \(\dmrho\), this function effects \[ \dmrho \rightarrow \hat{U}_t \, \dmrho \, {\hat{U}_t}^\dagger. \]
matrix
requires that \( \hat{U} \hat{U}^\dagger = \id \). Validation will check that matrix
is approximately unitarity via \[ \max\limits_{ij} \Big|\left(\hat{U} \hat{U}^\dagger - \id\right)_{ij}\Big|^2 \le \valeps \]
where the validation epsilon \( \valeps \) can be adjusted with setValidationEpsilon().[in,out] | qureg | the state to modify. |
[in] | target | the index of the target qubit. |
[in] | matrix | the Z-basis unitary matrix to effect. |
invalidQuESTInputError() |
|
Definition at line 86 of file operations.cpp.
Referenced by TEST_CASE().
Applies a singly-controlled one-qubit dense unitary matrix
to the specified target
qubit of qureg
.
Definition at line 91 of file operations.cpp.
void applyMultiControlledCompMatr1 | ( | Qureg | qureg, |
int * | controls, | ||
int | numControls, | ||
int | target, | ||
CompMatr1 | matrix ) |
Applies a multiply-controlled one-qubit dense unitary matrix
to the specified target
qubit of qureg
.
Definition at line 96 of file operations.cpp.
void applyMultiStateControlledCompMatr1 | ( | Qureg | qureg, |
int * | controls, | ||
int * | states, | ||
int | numControls, | ||
int | target, | ||
CompMatr1 | matrix ) |
Applies an arbitrarily-controlled one-qubit dense unitary matrix
to the specified target
qubit of qureg
, conditioned upon the controls
being in the given states
.
Definition at line 101 of file operations.cpp.
Referenced by applyMultiStateControlledRotateAroundAxis().
Multiplies a general one-qubit dense matrix
upon the specified target
qubit of qureg
.
matrix
and \( t = \) target
, and notate \(\hat{M}_t\) as per applyCompMatr1(). Unlike applyCompMatr1() however, this function only ever left-multiplies matrix
upon qureg
, regardless of whether it is a statevector or density matrix.Explicitly,
qureg
is a statevector \( \svpsi \), this function effects \[ \svpsi \rightarrow \hat{M}_t \, \svpsi. \]
qureg
is a density matrix \(\dmrho\), this function effects \[ \dmrho \rightarrow \hat{M}_t \, \dmrho. \]
There are no additional constraints like unitarity.
[in,out] | qureg | the state to modify. |
[in] | target | the index of the target qubit. |
[in] | matrix | the Z-basis matrix to multiply. |
invalidQuESTInputError() |
|
Definition at line 77 of file operations.cpp.